. Scientific Frontline

Monday, December 8, 2025

How bacteria resist hostile attacks

Aggressor bacteria such as Acinetobacter baylyi (green) can rarely kill Pseudomonas aeruginosa (live cells in black, dying cells in cyan).
Image Credit: Alejandro Tejada-Arranz, Biozentrum, University of Basel

Some bacteria use a kind of molecular “speargun” to eliminate their rivals, injecting them with a lethal cocktail. Researchers at the University of Basel have now discovered that certain bacteria can protect themselves against these toxic attacks. But this defense comes with a surprising downside: it makes them more vulnerable to antibiotics. 

Countless bacterial species share cramped environments where competition for space and resources is fierce. Some rely on a molecular speargun to outcompete their opponents. One of them is Pseudomonas aeruginosa. It is widespread in nature but also notorious as a difficult-to-treat hospital pathogen. 

Pseudomonas can live peacefully in coexistence with other microbes. But when attacked by bacteria from a different species, it rapidly assembles its own nano-speargun – the so-called type VI secretion system (T6SS) – to inject its aggressor with a toxic cocktail. 

How can Pseudomonas strike back when it has already been hit by a deadly cocktail itself? The answer has now been uncovered by Professor Marek Basler’s team at the Biozentrum of the University of Basel and published in Nature Communications

SoMAS Study: Microplastics in Oceans Distort Carbon Cycle Understanding

Plastic items, such as this part of a swimming float (blue), are often seen at ocean shorelines. These products eventually break down into microplastics, which permeate the oceans and add to the distribution of carbon along with organic matter.
Photo Credit: Luis Medina.

A study by researchers in Stony Brook University’s School of Marine and Atmospheric Sciences (SoMAS) shows that when microplastics are accidentally collected and measured with natural ocean organic particles, the carbon released by plastics during combustion appears as if it came from natural organic matter, which distorts scientists’ understanding of the ocean’s carbon cycle.

The carbon cycle in our oceans is critical to the balance of life in ocean waters and for reducing carbon in the atmosphere, a significant process to curbing climate change or global warming.

Microplastics are everywhere in the oceans. These small plastic fragments come from the breakdown of larger plastic items polluting the seas. Once they reach the sea through rivers, wastewater or runoff, they spread through coastal and open-ocean waters.

Jellyfish can be used to make mayonnaise and butter

Photo Credit: Marat Gilyadzinov

Researchers at the University of Southern Denmark (SDU) have discovered that jellyfish can be used as a food stabiliser. In the future, the slimy creatures may become an important ingredient in a more sustainable food production system.

Food stabiliser.

The word might not sound particularly appetizing, but without food stabilizers, much of the food we eat would be impossible to make. It would not be able to retain its consistency or form but would split or spread out. 

Nature itself has created many stabilizers to maintain the structure of organisms, and over time, we humans have learned to use them in our food. 

The most well-known example in the home kitchen is egg yolk, which allows mayonnaise to bind together. In the industrial food sector, stabilizers are even more crucial. Here, ingredients such as starch, pectin, gelatine, and algal stabilizers are used to achieve the right consistency in everything from ketchup to chocolate milk. 

Temporary carbon removals can compensate warming from methane emissions

Photo Credit: Marita Kavelashvili

Carbon removal projects could prove vital in offsetting methane emissions – the second largest contributor to global warming. 

Nature-based schemes that aim to remove CO2 through methods such as afforestation and reforestation are criticized for being temporary – the carbon removed is often re-released once projects end – as well as fraught with risk.  

But climate change researchers have shown they can play an important role in neutralizing the environmental impact of methane. 

Methane and carbon dioxide behave differently over time: methane warms the planet much more rapidly than carbon dioxide, causing more damage in the short to medium term, but methane has little long-term impact on global temperatures as it dissipates over time.  

Saturday, December 6, 2025

Molecular Biology: In-Depth Description

Image Credit: Scientific Frontline / AI Generated

Molecular biology is the branch of biology that studies the molecular basis of biological activity. It focuses on the chemical and physical structure of biological macromolecules—specifically nucleic acids (DNA and RNA) and proteins—and how these molecules interact to regulate cell function, replication, and expression of genetic information. The primary goal of this field is to understand the intricate molecular machinery within a cell that governs life itself, from the synthesis of proteins to the regulation of gene expression.

Microtechnology: In-Depth Description

Image Credit: Scientific Frontline

Microtechnology is the specific branch of engineering and science that deals with the design, fabrication, and integration of functional structures and devices with dimensions on the order of the micrometer (μm), typically ranging from 1 to 100 micrometers.

Situated on the dimensional scale between macro-engineering and nanotechnology, the primary goal of microtechnology is the miniaturization of physical systems to enhance performance, reduce power consumption, and enable mass production of complex devices at a low cost. It fundamentally underpins the modern ability to integrate sensing, processing, and actuating functions into single, microscopic chips.

FTPie

Image Credit: Scientific Frontline

In the modern digital ecosystem, the email inbox and basic cloud web interfaces remain surprisingly inefficient for managing complex file transfers. Whether you are a web developer deploying code, a video editor moving terabytes of raw footage, or a business owner archiving sensitive documents, the "file transfer" bottleneck is a persistent reality. Traditional FTP clients often feel like relics from the Windows 95 era—clunky, utilitarian, and disconnected from modern cloud workflows.

This is the gap FTPie aims to bridge. It positions itself not just as an FTP client, but as a unified "file logistics" hub that treats a Google Drive folder, an Amazon S3 bucket, and a legacy SFTP server with the same modern, drag-and-drop respect. This review examines the technology, features, and overall value of FTPie v2025.12.1, specifically highlighting its newly introduced Backup and Favorites capabilities.

What Is: Dementia

Illustration Credit: Scientific Frontline

The End of the Passive Era

The year 2025 marks a definitive inflection point in the history of neuroscience and geriatric medicine. For decades, the field of dementia care was characterized by a certain fatalism—a paradigm of "diagnose and manage" where the clinician’s role was largely to document decline and support the family. That era has officially closed. We have entered the age of precision intervention, defined by the ability to detect neurodegenerative pathology in blood plasma decades before symptoms arise, the availability of disease-modifying immunotherapies that clear toxic proteins from the brain, and a nuanced biological understanding that has shattered the monolithic concept of "senility" into a spectrum of distinct, treatable molecular events.

Our Scientific Frontline report provides an exhaustive analysis of the dementia landscape as it stands in late 2025. It synthesizes data from the latest clinical trials, including the landmark approval of subcutaneous maintenance dosing for anti-amyloid therapies, and examines the emerging economic reality where the global cost of dementia is projected to triple by mid-century. We explore the biological underpinnings of conditions ranging from classic Alzheimer’s Disease to the newly characterized Limbic-predominant Age-related TDP-43 Encephalopathy (LATE), and we evaluate the transformative potential of 14 modifiable risk factors that could prevent nearly half of all cases.

Receptors in mammary glands make livestock and humans inviting hosts for avian flu

Microscope-captured images of a mammary gland of a pig show the presence of influenza receptors. In the image on the left, receptors for avian influenza A are colored orange. In the image on the right, receptors for the type of influenza A that typically infects mammals are purple.
Image Credit: Dr. Tyler Harm/Iowa State University

An ongoing outbreak of highly pathogenic avian influenza has affected more than 184 million domestic poultry since 2022 and, since making the leap to dairy cattle in spring 2024, more than 1,000 milking cow herds. 

A new study led by Iowa State University researchers shows that the mammary glands of several other production animals – including pigs, sheep, goats, beef cattle and alpacas – are biologically suitable to harbor avian influenza, due to high levels of sialic acids.

“The main thing we wanted to understand in this study is whether there is potential for transmission among these other domestic mammals and humans, and it looks like there is,” said Rahul Nelli, the study’s lead author and a research assistant professor of veterinary diagnostic and production animal medicine.

New study reviews research linking probiotic and prebiotic supplements and skin health

Photo Credit: Christin Hume

Researchers from King’s College London and Yakult Science for Health have conducted a comprehensive review of existing research exploring how probiotic, prebiotic, and synbiotic supplements may influence skin health and disease.

The review mapped 516 studies from around the world examining the relationship between these supplements and various aspects of skin health, from general skin condition to the management of diseases such as atopic dermatitis, psoriasis, and acne. 

Our diet can influence skin health through its impact on the gut microbiome — the community of microorganisms living in our digestive tract. The concept of a gut–skin axis was first proposed nearly a century ago but has gained renewed attention in recent years, as growing evidence suggests that changes in gut microbes can affect skin condition and ageing. Probiotics, prebiotics, and synbiotics are thought to promote skin health by modifying the gut microbiome, which may in turn improve skin function and resilience. 

Featured Article

What Is: An Ecosystem

The Holocoenotic Nature of the Biosphere Image Credit: Scientific Frontline / stock image The Genesis of a Paradigm   The concept of the eco...

Top Viewed Articles