. Scientific Frontline

Friday, December 5, 2025

Where the elements come from?

The chlorine and potassium needed to support planet formation and sustain life come from exploding stars.
Image Credit: JAXA

"Why are we here?" This is humanity's most fundamental and persistent question. Tracing the origins of the elements is a direct attempt to answer this at its deepest level. We know many elements are created inside stars and supernovae, which then cast them out into the universe, yet the origins of some key elements have remained a mystery. 

Chlorine and potassium, both odd-Z elements -- possessing an odd number of protons -- are essential to life and planet formation. According to current theoretical models, stars produce only about one-tenth of the amount of these elements observed in the universe, a discrepancy that has long puzzled astrophysicists. 

Soft Electronics That Shape-Shift

Vidhika Damani and assistant professor Laure Kayser inspect a sample of the reversible conductive hydrogel they developed for bioelectronics applications.
Photo Credit: Evan Krape

What if a doctor could inject an electricity-conducting liquid into the body, let it temporarily solidify to record nerve signals or jump-start healing, and then return it to liquid form for easy removal?

That vision is edging closer to reality. University of Delaware researchers have developed a reversible conductive hydrogel, a material that can alternate between liquid and gel states. The hydrogel is designed to serve as an interface between conventional electronics and the body’s tissues, offering promise for both injectable implants and wearable devices.

The research team, led by Laure Kayser, assistant professor of materials science and engineering at UD’s College of Engineering, describes the new material in Nature Communications.

Historical geography helps researchers solve 2,700-year old eclipse mystery

Artist’s interpretation of an ancient total solar eclipse. This illustration is based on artistic imagination and does not represent the exact appearance of the eclipse recorded in 709 BCE.
Image Credit: Kano Okada, Nagoya University
Based on an image by Phil Hart / NASA

Humanity’s earliest datable record for a total solar eclipse allows scientists to derive accurate measurements of Earth’s ancient rotation speed and provides independent validation of solar cycle reconstruction in the 8th century BCE.

An international team of researchers has used knowledge of historical geography to reexamine the earliest datable total solar eclipse record known to the scientific community, enabling accurate measurements of Earth’s variable rotation speed from 709 BCE. The researchers calculated how the Sun would have appeared from Qufu, the ancient Chinese capital of the Lu Duchy, during the total solar eclipse. Using this information, they analyzed the ancient description of what has been considered the solar corona—the dim outer atmosphere of the Sun visible to the naked eye only during total eclipses—and found that its morphology supports recent solar cycle reconstructions for the 8th century BCE. 

Their findings, published in Astrophysical Journal Letters, provide reliable new data about Earth’s rotation speed during this period and suggest the Sun was becoming more active after a long quiet period, independently confirming what other scientists have found using radiocarbon analysis. 

Researchers identify kidney sensor that helps control fluid balance

Rose Hill, Ph.D., second from left,studies sensory nerves within the kidneys at OHSU. Her new study identified a protein that acts as a pressure sensor in the kidneys, which helps the body control fluids and blood pressure. With her are lab team members: Taylor Krilanovich, Lily Schainker and Janelle Doyle.
 Photo Credit: OHSU/Christine Torres Hicks

A new study has identified a critical “pressure sensor” inside the kidney that helps the body control blood pressure and fluid levels. The finding helps explain how the kidneys sense changes in blood volume — something scientists for decades have known occurs but didn’t have a mechanistic explanation.

Researchers at Oregon Health & Science University and collaborating institutions discovered that a protein called PIEZO2 acts as a mechanical sensor in the kidney. When blood volume changes, this protein helps trigger the release of renin, a hormone that starts a chain reaction known as the renin-angiotensin-aldosterone system, or RAAS. The system is one of the body’s main tools for keeping blood pressure stable and making sure the body has the right balance of salt and water.

SwRI may have solved a mystery surrounding Uranus’ radiation belts

SwRI scientists compared space weather impacts of a fast solar wind structure (first panel) driving an intense solar storm at Earth in 2019 (second panel) with conditions observed at Uranus by Voyager 2 in 1986 (third panel) to potentially solve a 39-year-old mystery about the extreme radiation belts found. The "chorus wave" is a type of electromagnetic emission that may accelerate electrons and could have resulted from the solar storm.
Image Credit: Southwest Research Institute

Southwest Research Institute (SwRI) scientists believe they may have resolved a 39-year-old mystery about the radiation belts around Uranus. 

In 1986, when Voyager 2 made the first and only flyby of Uranus, it measured a surprisingly strong electron radiation belt at significantly higher levels than anticipated. Based on extrapolations from other planetary systems, Uranus’ electron radiation belt was off the charts. Since then, scientists have wondered how the Uranian system could support such an intense trapped electron radiation belt, at a planet unlike anything else in the solar system. 

A New Kind of Copper from the Research Reactor

In front of the nuclear reactor at TU Wien
Photo Credit: © TU Wien

The copper isotope Cu-64 plays an important role in medicine: it is used in imaging processes and also shows potential for cancer therapy. However, it does not occur naturally and must be produced artificially — a complex and costly process. Until now, Cu-64 has been generated by bombarding nickel atoms with protons. When a nickel nucleus absorbs a proton, it is transformed into copper. At TU Wien, however, a different pathway has now been demonstrated: Cu-63 can be converted into Cu-64 by neutron irradiation in a research reactor. This works thanks to a special trick — so-called “recoil chemistry.” 

New deep-sea species discovered during mining test

A small marine bristle worm. The group from the University of Gothenburg has been working with this species. It is one of the few species that is slightly more common in this area. The animal is about 1-2 mm long.
Photo Credit: Natural History Museum, London & Göteborgs Universitet

There is a high demand globally for critical metals, and many countries want to try extracting these sought-after metals from the seabed. An international study, which has discovered large numbers of new species at a depth of 4,000 meters, shows that such mining has less of a negative impact than expected. However, species diversity declined by a third in the tracks of the mining machine. 

In a major research project, marine biologists from several countries have attempted to map life in one of the least explored places on Earth: the deep-sea floor of the Pacific Ocean. 

UCLA study uncovers how a key protein helps breast cancer cells survive in hostile conditions

NBCn1 (purple) sits in the cell membrane and brings two sodium ions (2Na⁺) and one carbonate ion (CO₃²⁻) into the cell, raising its internal pH. This helps breast cancer cells stay alkaline and survive in low-oxygen, acidic tumor environments.
Illustration Credit: Courtesy of UCLA/Health

UCLA scientists have characterized the structure and function of a key survival protein in breast cancer cells that helps explain how these tumors resist environmental stress and thrive in acidic, low-oxygen environments that would normally be toxic to healthy cells.

Breast cancer cells rely on a transporter protein called NBCn1 to bring alkali ions into the cell and maintain a favorable internal pH. Using advanced cryo-electron microscopy combined with computational modeling, the researchers showed that NBCn1 moves two sodium ions and one carbonate ion through an efficient “elevator-like” motion that minimizes energy use. This allows NBCn1 to achieve a high transport rate of approximately 15,000 ions per second, helping tumor cells maintain an internal pH that promotes survival, division and resistance to acidic stress. 

Icy Hot Plasmas: Fluffy, Electrically Charged Ice Grains Reveal New Plasma Dynamics

Ice grains, illuminated by a green sheet of laser light, are suspended in the plasma discharge (purple). Insets show individual ice grains imaged with 20x magnification.
Image Credit: Bellan Plasma Group/Caltech

When a gas is highly energized, its electrons get torn from the parent atoms, resulting in a plasma—the oft-forgotten fourth state of matter (along with solid, liquid, and gas). When we think of plasmas, we normally think of extremely hot phenomena such as the Sun, lightning, or maybe arc welding, but there are situations in which icy cold particles are associated with plasmas. Images of distant molecular clouds from the James Webb Space Telescope feature such hot–cold interactions, with frozen dust illuminated by pockets of shocked gas and newborn stars.

Now a team of Caltech researchers has managed to recreate such an icy plasma system in the lab. They created a plasma in which electrons and positively charged ions exist between ultracold electrodes within a mostly neutral gas environment, injected water vapor, and then watched as tiny ice grains spontaneously formed. They studied the behavior of the grains using a camera with a long-distance microscope lens. The team was surprised to find that extremely "fluffy" grains developed under these conditions and grew into fractal shapes—branching, irregular structures that are self-similar at various scales. And that structure leads to some unexpected physics.

A speed camera for the universe

The stars (or rather galaxies) of the show.
A montage of eight time-delay gravitational lens systems. There’s an entire galaxy at the center of each image, and the bright points in rings around them are gravitationally lensed images of quasars behind the galaxy. These images are false-color and are composites of data from different telescopes and instruments.
Image Credit: ©2025 TDCOSMO Collaboration et al.
(CC BY-ND 4.0)

There is an important and unresolved tension in cosmology regarding the rate at which the universe is expanding, and resolving this could reveal new physics. Astronomers constantly seek new ways to measure this expansion in case there may be unknown errors in data from conventional markers such as supernovae. Recently, researchers including those from the University of Tokyo measured the expansion of the universe using novel techniques and new data from the latest telescopes. Their method exploits the way light from extremely distant objects takes multiple pathways to get to us. Differences in these pathways help improve models on what happens at the largest cosmological scales, including expansion.

Featured Article

What Is: An Ecosystem

The Holocoenotic Nature of the Biosphere Image Credit: Scientific Frontline / stock image The Genesis of a Paradigm   The concept of the eco...

Top Viewed Articles